
 1



Abstract—Branch prediction has a strong effect on a system’s

single-threaded performance. However, branch prediction

research has died down over recent years, partly due to

diminishing returns at high cost. We propose a new method to

improve branch prediction: using directed search heuristics such

as genetic algorithms to automatically generate and refine branch

predictors. To accomplish this goal, we further propose a new

language to describe any branch predictor and can be easily

extendable to describe any hardware device. We discuss our

framework, which can automatically generate branch predictors

when provided with a module library, parse the language, and

refine the predictors based on genetic algorithm techniques. In

addition, we propose modifications to the base genetic algorithm

to improve population diversity, increase quality of results, and

reduce stagnation.

I. INTRODUCTION

Modern microprocessors aggressively exploit instruction

level parallelism (ILP) through deep pipelines, superscalar

issue, and out-of-order (OoO) execution. Such processors

require a constant stream of instructions to execute in order to

achieve maximum performance. However, branch hazards can

disrupt the instruction stream because the correct order of

instructions cannot be determined until the given branch is

resolved.

Consequently, modern microprocessors rely heavily on

speculative execution. They aim to predict the direction and

target of a branch and speculatively fetch the next instructions

before the true order of instructions is known. Once the branch

is resolved, if the wrong instructions were executed, then the

processor must roll back to the previous state before

speculative execution, and re-execute with the correct

instructions.

The process of predicting the direction of a branch is called

branch prediction. Many branch prediction strategies exist,

with the most basic strategies being static, meaning that the

branch predictions are made at compile-time and remain static

during execution. For example, one can predict that all

backward branches will be taken, while all forward branches

will not be taken [1], under the rationale that loop branches

jump backwards and are usually taken.

More advanced branch prediction strategies are dynamic

and use run-time history to predict future branches. The

pioneering dynamic branch predictor was Yeh and Patt's Two-

Level Adaptive Predictor [2], which uses both first-level

branch history information and second-level pattern history to

make a prediction. The two-level adaptive predictor was very

successful and was able to achieve an average of 97%

accuracy on benchmarks at the time [2]. Many other variations

of the two-level adaptive predictor exist, and are differentiated

by whether the branch history is global, per-address, or per-

set, and whether the pattern history is global, per-address, or

per-set [3].

One branch predictor may work best for a particular

execution pattern, while another predictor may be better for

another. Hybrid branch predictors exploit this property by

combining several predictors into a single predictor through

the use of a meta-predictor, which remembers what predictor

worked best for a given branch, so that the most suitable

predictor is always used [4].

Researchers are still coming up with newer and better

designs for branch predictors. Some of the more recent

designs, such as Jimenez and Lin's Perceptron predictor [5],

have been based on machine learning techniques. The

Championship Branch Prediction competition, which has been

held in 2004, 2006, and 2011 [6], is a competition in which

contestants aim to design the most accurate branch predictor.

The competition has been dominated by Andre Seznec's

designs, such as [7].

Branch prediction has come a long way and modern branch

predictors are highly accurate. For example, [7] was able to

achieve a mispredict rate of under 3 mispredicts per 1000

instruction. However, it remains an open question whether

further improvements in branch prediction accuracy are

possible and, if so, what these new branch predictors might

look like. In addressing this problem, difficulties arise from

the fact that:

1) Branch Prediction Design is Ad-hoc: Branch prediction

design is currently highly ad-hoc and non-systemized. The

prevalent approach is to simulate an existing design with a set

of benchmarks, find the mispredictions, then modify the

design in an ad-hoc fashion to handle the mispredictions. This

is problematic, because without a systematic approach, we

might only be picking at localized regions of the design space

while other promising designs remain unexplored.

2) Current Evaluation Methodologies Ignores Hardware

Realities: There are presently no effective ways to evaluate

the implementability of a predictor design. The existing

evaluation methodology simulates a predictor design in

software by feeding it instruction traces from real benchmarks,

then measuring the number of times the predictor would have

mis-predicted, along with the number of cycles that the fetch

unit would have spent on the wrong paths [6].

However, this evaluation strategy does not take into account

the implementability of the design. The only implementation

metric which can be extracted from a software model of the

predictor is the amount of storage the design requires. Other

metrics, such as power consumption, design complexity,

Evolving a Better Branch Predictor

Dan Zhang and Ben Lin, University of Texas at Austin

 2

delay, etc., are summarily ignored. Indeed, a common

criticism of the Championship Branch Prediction competition

is that some of the submitted designs aren’t even

implementable in real hardware. For example, neural network-

based designs like [5] require a large adder-tree that would

have unacceptably large delays in real hardware.

We wish to address these problems by developing a

systematic methodology for designing branch predictors and

providing the means to evaluate the cost of implementation of

such a design. To accomplish these goals, we design a high-

level language capable of expressing any branch predictor.

This language can be easily modified to express other

hardware devices, such as prefetchers. Then, we present a

constrained random generator to automatically generate any

number of possible branch predictors of any given complexity.

Finally, we apply genetic algorithms, a directed search

heuristic that mimics the process of natural evolution to refine

these generated models, to create new branch predictors. This

entire process, from generation to evaluation and refinement,

is completely automated.

II. PRIOR WORK

The concept of designing hardware modules using genetic

algorithms is not novel: Emer and Gloy proposed a similar

approach in 1997 [8]. In their work, they developed a general

language in which most table-based branch predictors can be

expressed. Figure 1 shows Emer’s model of a branch

predictor. Their proposed language modeled all predictors as a

table with an Input signal which indexes into the table, a

Prediction output signal representing the value stored at the

table index, and a Feedback input signal which can be fed

back into the table.

Fig. 1. Emer and Gloy’s model of a branch predictor

Any design expressed in Emer and Gloy’s language can

then be mapped to a tree structure. These trees can be

automatically generated and refined using genetic algorithms

[9]. A high level overview of the algorithm is as follows:

1. Generation: an initial population is randomly

generated, forming the initial generation.

2. Selection: Individuals are evaluated and a fitness

metric is generated for each individual. Those with

high fitness are selected for reproduction. Those with

low fitness may be discarded.

3. Reproduction: Attributes from each parent are

combined to form children (crossover), as well as some

change for random mutations.

Additional constraints were added to ensure that we

produce “legal and usable individuals” [8]. After the genetic

operations step, individuals that map to illegal language

expressions are corrected, and individuals that require too

much memory have their storage structures randomly

truncated until their memory requirement falls under a given

limit.

Using the methodology outlined above, Gloy and Emer

were able to achieve respectable results. They were able to

automatically synthesis predictors that were comparable to the

state-of-the-art predictors at the time (e.g. GShare) [8].

It’s also worth noting that Seznec used simulated annealing

(another directed search heuristic) for tuning parameters in his

predictor design in [7], but otherwise maintained an ad-hoc

design approach.

We improve on Emer’s work in several ways. Firstly, our

language is more general and can be used to describe any

hardware structure, besides just branch predictors. Secondly,

our language supports the notion of “introns” or “junk DNA”,

nodes that are disconnected and do not affect system output

but may later do so due to mutations. Thirdly, we develop

constrained random techniques to generate better quality

predictors for the initial population. Fourthly, we use genetic

algorithm improvements, such as elitism, seeding the initial

population with known good results, and anti-clustering

techniques to improve results.

III. METHODOLOGY

In this section we explain our methodology and

infrastructure.

A. Language

Our first step was to define a new description language for

branch predictors. A main goal was to not limit ourselves to

describing only predictors: it should be easy to extend the

language to support other hardware devices. We aimed to

achieve this by including both high-level, branch predictor-

specific language constructs, and low-level generic constructs.

For example, aside from having NAND, MUX, and XOR

gates, we have tables, branch history registers, path history

registers, and 2-bit counter tables in our language library. New

library constructs can be easily added without touching the

interpreter and generator source code.

Our language consists of a set of generic modules, each of

which may contain any number of parameters and inputs. For

simplicity, we assume that each module can only produce a

single output. All inputs and outputs are assumed to be wires

of arbitrary length. Any necessary zero-extension or truncation

is done internal to the module.

Below we show a TABLE module. It has two parameters:

the number of entries in the table, and the width of each entry.

For all parameters, it is possible to specify a possible range of

values, using the notation [upper limit : lower limit]. The

predictor generation algorithm will then pick a value from

within the range.

Next, we specify the inputs for each module. Each input is

either the output of another module, or one of the primitive

inputs. In our example table module, the table inputs are the

 3

read index, write value, write index, and write enable signals,

respectively.

For each input, you can specify the affinity that the

particular input has for a given type of signal. One can then

assign a probability that the particular input will be attached to

the specified preferred input. We use the keyword null to

denote that the given input has no particular affinity for any

specific value. In this case, all signals have an equal

probability of being attached to that input.

TABLE#(

[max # of entries : min # of entries]%100,

[max size of entry : min size of entry]%100

)

{

preferred read index % probability,

preferred write value % probability,

preferred write index % probability,

preferred write enable % probability

}

Finally, we define the primitive inputs and outputs which

our language supports. The primitive inputs are the inputs that

the branch predictor will receive from the outside

environment.

We support the following primitive inputs:

We only have one primitive output, which is the prediction

given. The least significant bit of the prediction signal will

decide whether or not the branch is taken:

Shown in the following table are the modules we decided to

include in the language, and what each parameter and input

affinity is set to. Note that our language is extremely

extensible, and new modules can very easily be added (or

existing modules modified):

Basic logic:

Branch prediction specific logic:

For the branch predictor specific modules, a GHR is a

global history register. It records the history of all branches

encountered in the program. It is basically a shift register such

that a 1 is shifted in if the most recent branch encountered was

taken, and a 0 otherwise. Separate Fetch and Retire versions

exist for the global branch history at fetch and retire time,

respectively. Similarly, the PHR is a path history register; it is

a shift register that records the least significant bit of all the

branch addresses encountered so far.

The TABLE module is a generic table; TABLE CNTR is a

table of saturating n-bit counters; TABLE 2BITCNTR is a

table of saturating 2-bit counters, which we included as a

special instantiation of TABLE_CNTR

 4

We now present an example instantiation of a GShare

predictor, written in our language:

The corresponding dependency graph of GShare is shown

below:

Fig. 2. Dependency graph of GShare

Because of the nature our language, it is totally possible for

us to generate a predictor whose dependency graph is

disconnected. In Figure 3, we see that the component

highlighted is not connected to the predictor output in anyway:

Fig. 3. A predictor which is disconnected (highlighted component is not

connected to the predictor out)

While this may appear at first to be a drawback, there are

actually advantages to having “useless” components in the

predictor. It turns out that for genetic algorithms, it is often

usful to have useless genomes called “introns” (or “junk

DNA”) that, while not directly useful, serve to protect

developing individuals from mutations and other genetic

operations [8].

This is because in general, most mutations initially decrease

the fitness of an individual. Improvements to an individual’s

fitness usually only occur after a series of mutations. Thus, if

there were no intron, then any mutation would immediate

impact the fitness of the individual, most likely lowering it,

making it far less likely for the individual to survive to the

next generation. On the other hand, if the mutations initially

occurred in the introns, then the fitness of the individual would

not be immediately affected. Consequently, it’s more likely

for several mutations to accumulate in the introns while the

fitness of the individual remains unchanged. A later mutation

may finally connect the intron component to the predictor

output. If the accumulated mutations led to a better structure,

the individual’s fitness level will now increase (if it didn’t,

then of course the individual’s fitness will decrease).

B. Fitness Test

To actually evaluate the fitness of generated individuals, we

rely on the trace simulation framework provided by the

Championship Branch Prediction competition [6].

The Championship Branch Prediction framework provides

traces of various workloads, as well as a test harness which

will feed the traces into the predictor under test and generates

performance statistics. Thus, we needed to implement a

compiler which can take a description of a predictor in our

language and generate the appropriate C++ code for the

simulation framework. To do this, we implemented a C++

class for each module in our language. The module parameters

become arguments into the class constructor. In addition, each

module class implements a Invocate() function, which

takes as input the input arguments to the module, and produces

a single output.

To model the fact that all our signals and variables can be

bitstrings of arbitrary length, we chose to use the

dynamic_bitset class from the Boost library. This is a

class that represents a bitstring of arbitrary width, and the

width of the bitstring can be resized at run-time. This gave us

the flexibility to combine modules in the most general and

arbitrary ways (since we not have to worry about input/output

width mismatches, which was a problem that plagued Emer

and Gloy [8]). However, we also suffer a clear performance

penalty as a result of our approach. Many of the operations

(i.e. logic operators like AND, OR, etc.) are far more

computationally expensive when performed on these generic

bitstrings of arbitrary length, instead of on primitive types like

int. We also often need to truncate or pad inputs to the

appropriate width because we allow for arbitrary widths.

As an example of the slowdown we suffer, the simulation of

GShare takes roughly 1 second if the C++ code was written

using int, but takes 4 seconds when using dynamic_bitset.

Obviously, for more complex predictors, the slowdown

becomes worse. A big predictor can take up to 30 seconds to

simulate. We profiled the simulation run and fund that most of

the times were spent on dynamic_bitset method calls.

Yet despite the significant slowdown created by using

arbitrary length bitstrings, we were able to mitigate this

somewhat by pruning dead code generated by disconnected

components (discussed below), and by doing several (12)

simulations in parallel.

In terms of generating code, we first generate a dependency

graph for the predictor like in Figure 2 and 3, and prune out

the disconnected components, since they do not affect the

prediction. Then, we perform a topological sort on the

dependency graph to get the order in which we need to

 5

invocate all the component modules. We then generate the

C++ code by calling the Invocate() methods on the

different module class objects in the order specified by the

topological sort. The (simplified) generated C++ code for

Gshare is shown below in Figure 4:

Fig. 4. Generated C++ code for GShare

One clear drawback with our approach is that we cannot

have loops in the dependency graph. Obviously, if we had a

loop in the dependency graph with purely combinational (i.e.

logic) modules, then this would be a problem, as this would

translate to a combinational loop in real hardware. However,

our method also prevents us from having a table module

output feed back into its own input chain. This is a false

constraint because in real hardware, such loops would not be a

problem, because there would be a register in the loop, so it is

not a real combinational loop. However, our method currently

prevents such constructs, and it actually can prevent us from

being able to generate more advanced predictors like [5] and

[7]. This is something we definitely need to address in the

future.

Also, it’s worth noting that although the Championship

Branch Prediction framework provides many traces, we chose

to use the smallest trace in order to reduce simulation times.

Our rationale is that we can use the smallest trace to first

identify promising predictor candidates, then run the entire

trace on them to get the actual performance statistic.

C. Predictor Generation

One key aspect to successfully using genetic algorithms is

to generate a diverse and reasonable initial population.

Generated predictors need to be sufficiently complex, yet with

high enough performance such that useful components can be

identified and propagated amongst the population. Thus, the

naïve approach of randomly selecting a module, parameters,

and inputs does not suffice. Instead, we propose using a

constrained random generator to ensure a sufficiently high

quality initial population. We focus on improving the quality

of parameters and module input selection for this work.

Generating reasonable parameters is simply a matter of

selecting between a range of values for each parameter in a

configuration file. A better approach would be to define an

upper bound, lower bound and mean, but we were not able to

implement this due to a lack of time.

Selecting proper inputs is a much more difficult task. A

module may have any number of inputs, and the order of

inputs is important. For example, a table has a read index,

write enable, write data, and write index as its inputs. These

inputs are not interchangeable: for example, one would prefer

to connect the branch PC value to a table index instead of its

write-enable line. To account for this issue, we propose the

notion of input affinity: each module input has some degree

of preference for a specific input wire name. The generator

will attempt to choose the specific wire or the output value of

a module that used the wire as its input.

D. Predictor Mating Selection

After evaluating the code, we rank the predictors based on

their performance provided by the framework (cycle penalty

per thousand instructions). We use a tournament approach for

selecting pairs of branch predictors for mating: first, we select

a random pair of predictors. We then choose the best predictor

out of those two. Then, we perform this operation again. These

two best predictors (the tournament winners) are chosen to be

mates. We continue with this process for all members of the

population.

E. Predictor Mating

To mate two branch predictors, we read the predictor

language files and generate dependency trees. These two trees

are then merged by randomly selecting a sub-tree from each

and swapping the two sub-trees. Note that since the tree is a

subset of the predictor description (due to dead code), special

care needs to be performed to make sure illegal code is not

produced. Conflicting output names are renamed and now-

invalid inputs are randomly attached to valid inputs.

F. Predictor Mutation

Once the diversity of the initial population is exhausted, we

depend on mutation to generate new branch predictors. Thus,

we need to support many mutation functions to enable us to

perform any branch modification possible. We chose the

following set of operations to support:

1. Input mutation: a node is randomly chosen and one of

its inputs is randomly swapped for a different input.

2. Parameter mutation: a node is randomly chosen and

 6

one of its parameters is regenerated using the

constrained random technique described in Section 3b.

3. Node addition: a new module is randomly generated

and its inputs and parameters are randomly selected

using the constrained random technique described in

Section 3b.

4. Node deletion: a random module is deleted. Any

resulting invalid inputs are randomly swapped for valid

inputs.

G. Population Selection

After the children are generated, we re-rank all predictors

(parents + children) and choose the predictors with the highest

fitness for the next generation. This is an extreme form of

elitism and provides the fastest method of convergence but

may lead to a sub-optimal solution. We leave testing various

methods of selection as future work.

IV. METHODOLOGY REFINEMENT

After running initial experiments, we identified numerous

problems with the basic genetic algorithm approach and

introduced heuristics to address these issues.

A. Local Maximum Stagnation

After 5-10 generations, the genetic algorithm converges on

a relatively poor local maximum and does not find a better

alternative. To combat this, we implemented stagnation

detection: after a certain number of generations in which the

best predictor does not change, we start to increase the

mutation rate. For our tests, the mutation rate starts out at 1

mutation per generated child, and then is doubled after every

generation up to a maximum of 32. We were not able to

improve performance much even after using this approach.

B. Poor Initial Population

Due to a lack of time, we were not able to effectively tune

our constrained random predictor generator. Thus, we decided

to introduce population seeding: we augmented our initial

population pool with known good predictors, such as gshare

and some hybrid predictors. This pool is separate from the rest

of the population and is only available for the purposes of

mating. This did improve convergence significantly and

produced a better local maximum.

C. Poor Population Diversity

After a few generations, the population diversity started to

suffer greatly as it converged on a solution. Poor diversity

prevents the genetic algorithm from operating efficiently and

can cause it to converge on a poor local maxima. To combat

this issue, we introduced cluster detection: when “clusters” of

predictors with the exact same performance (and thus the same

internal structure) are detected, their fitness score is multiplied

by a function of the number of members in the cluster.

However, we would still like to keep a few of the members.

Therefore, for predictors {P1,… Pn}, we compute the modified

fitness of the predictors as { P1*1, …, Pn*n}. In practice, this

improved the population diversity significantly.

V. EVALUATION

Due to the sheer magnitude of the project, we were unable

to spend enough time tuning the overall process. Performance

results were poor, although the overall technique seems

relatively promising. Overall, we were not able to evolve

anything better than a 2-bit counter table for unknown reasons.

Further work is necessary to identify potential issues related to

our complicated generation and mating algorithm. We did all

of our testing on our lab machine, an overclocked 6-core

machine running at 4.0GHz with 24GB DDR3, as well as the

LRC machines. Due to our performance optimizations

(launching parallel compilations and simulation), runtimes of

30 seconds for each predictor simulation were common. We

only had 6 cores and 12 threads available, so each generation

would complete in about POPULATION_SIZE*0.5/12

minutes. It is possible to farm the job out to multiple

computers to further improve runtimes.

We evaluated the genetic algorithm with and without cluster

detection. The runs are with a population size of 24, 100

generations, branch predictor complexity of up to 20 nodes,

and mutation rate of 1 mutation per child. As Figures 5 and 6

show, after tens of generations, the run without cluster

detection converges completely on a single solution. However,

with cluster detection, the population stays diverse (and with a

similar local min), improving its changes to find a better

solution.

Fig. 5. Predictor fitness vs. generation without cluster detection

Fig. 6. Predictor fitness vs. generation with cluster detection

 7

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a new language to describe branch

predictors that can be easily extended to any type of hardware

devices. We propose a method of automatically generating,

evaluating, and refining predictors and provide a proof of

concept design. Although we were not able to improve on

existing predictor designs, we have demonstrated that our

automated approach can improve the performance of the

randomly generated predictors, albeit currently not well.

Genetic algorithms need a lot of tuning to produce good

results, and we simply were not able to do this due to a lack of

time. However, due to the modularized and parameterized way

in which our code was written, doing so is not difficult.

Future work includes allowing for table outputs to feed back

into table inputs, generating HDL code from the branch

predictor description language, improving the constrained

random generator, tweaking the library modules and their

input affinity weights, and improving the predictor mating and

mutation functions.

VII. REFERENCES

[1] J. E. Smith, “A study of branch prediction strategies,” in 25 years of the

international symposia on Computer architecture (selected papers), ser.

ISCA ’98. New York, NY, USA: ACM, 1998, pp. 202–215. [Online].
Available: http://doi.acm.org/10.1145/285930.285980

[2] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch

prediction,” in Proceedings of the 24th annual international
symposium on Microarchitecture, ser. MICRO 24. New York,

NY, USA: ACM, 1991, pp. 51–61. [Online]. Available:

http://doi.acm.org/10.1145/123465.123475
[3] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors

that use two levels of branch history,” in Proceedings of the 20th annual

international symposium on computer architecture, ser. ISCA ’93.
New York, NY, USA: ACM, 1993, pp. 257–266. [Online]. Available:

http://doi.acm.org/10.1145/165123.165161

[4] B. Predictors and S. McFarling, “Combining branch predictors,” 1993.
[5] D. A. Jimenez and C. Lin, “Dynamic branch prediction with

perceptrons,” High-Performance Computer Architecture, International

Symposium on Computer Architecture, vol. 0, p. 0197, 2001.
[6] “Championship branch prediction,” 2011. [Online]. Available:

http://www.jilp.org/jwac-2/

[7] A. Seznec, “Analysis of the o-geometric history length branch
predictor,” International Symposium on Computer Architecture, vol. 0,

pp. 394–405, 2005.

[8] J. Emer and N. Gloy, “A language for describing predictors and its
application to automatic synthesis,” in Proceedings of the 24th annual

international symposium on Computer architecture, ser. ISCA ’97.

New York, NY, USA: ACM, 1997, pp. 304–314. [Online]. Available:
http://doi.acm.org/10.1145/264107.264212

[9] J. R. Koza, “Genetic programming,” 1992.

