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Abstract—Branch prediction has a strong effect on a system’s 

single-threaded performance. However, branch prediction 

research has died down over recent years, partly due to 

diminishing returns at high cost. We propose a new method to 

improve branch prediction: using directed search heuristics such 

as genetic algorithms to automatically generate and refine branch 

predictors. To accomplish this goal, we further propose a new 

language to describe any branch predictor and can be easily 

extendable to describe any hardware device. We discuss our 

framework, which can automatically generate branch predictors 

when provided with a module library, parse the language, and 

refine the predictors based on genetic algorithm techniques. In 

addition, we propose modifications to the base genetic algorithm 

to improve population diversity, increase quality of results, and 

reduce stagnation. 

I. INTRODUCTION 

Modern microprocessors aggressively exploit instruction 

level parallelism (ILP) through deep pipelines, superscalar 

issue, and out-of-order (OoO) execution. Such processors 

require a constant stream of instructions to execute in order to 

achieve maximum performance. However, branch hazards can 

disrupt the instruction stream because the correct order of 

instructions cannot be determined until the given branch is 

resolved. 

Consequently, modern microprocessors rely heavily on 

speculative execution. They aim to predict the direction and 

target of a branch and speculatively fetch the next instructions 

before the true order of instructions is known. Once the branch 

is resolved, if the wrong instructions were executed, then the 

processor must roll back to the previous state before 

speculative execution, and re-execute with the correct 

instructions. 

The process of predicting the direction of a branch is called 

branch prediction. Many branch prediction strategies exist, 

with the most basic strategies being static, meaning that the 

branch predictions are made at compile-time and remain static 

during execution. For example, one can predict that all 

backward branches will be taken, while all forward branches 

will not be taken [1], under the rationale that loop branches 

jump backwards and are usually taken. 

More advanced branch prediction strategies are dynamic 

and use run-time history to predict future branches. The 

pioneering dynamic branch predictor was Yeh and Patt's Two-

Level Adaptive Predictor [2], which uses both first-level 

branch history information and second-level pattern history to 

make a prediction. The two-level adaptive predictor was very 

successful and was able to achieve an average of 97% 

accuracy on benchmarks at the time [2]. Many other variations 

of the two-level adaptive predictor exist, and are differentiated 

by whether the branch history is global, per-address, or per-

set, and whether the pattern history is global, per-address, or 

per-set [3].  

One branch predictor may work best for a particular 

execution pattern, while another predictor may be better for 

another. Hybrid branch predictors exploit this property by 

combining several predictors into a single predictor through 

the use of a meta-predictor, which remembers what predictor 

worked best for a given branch, so that the most suitable 

predictor is always used [4]. 

Researchers are still coming up with newer and better 

designs for branch predictors. Some of the more recent 

designs, such as Jimenez and Lin's Perceptron predictor [5], 

have been based on machine learning techniques. The 

Championship Branch Prediction competition, which has been 

held in 2004, 2006, and 2011 [6], is a competition in which 

contestants aim to design the most accurate branch predictor. 

The competition has been dominated by Andre Seznec's 

designs, such as [7]. 

Branch prediction has come a long way and modern branch 

predictors are highly accurate. For example, [7] was able to 

achieve a mispredict rate of under 3 mispredicts per 1000 

instruction. However, it remains an open question whether 

further improvements in branch prediction accuracy are 

possible and, if so, what these new branch predictors might 

look like. In addressing this problem, difficulties arise from 

the fact that: 

1) Branch Prediction Design is Ad-hoc: Branch prediction 

design is currently highly ad-hoc and non-systemized. The 

prevalent approach is to simulate an existing design with a set 

of benchmarks, find the mispredictions, then modify the 

design in an ad-hoc fashion to handle the mispredictions. This 

is problematic, because without a systematic approach, we 

might only be picking at localized regions of the design space 

while other promising designs remain unexplored. 

2) Current Evaluation Methodologies Ignores Hardware 

Realities: There are presently no effective ways to evaluate 

the implementability of a predictor design. The existing 

evaluation methodology simulates a predictor design in 

software by feeding it instruction traces from real benchmarks, 

then measuring the number of times the predictor would have 

mis-predicted, along with the number of cycles that the fetch 

unit would have spent on the wrong paths [6]. 

However, this evaluation strategy does not take into account 

the implementability of the design. The only implementation 

metric which can be extracted from a software model of the 

predictor is the amount of storage the design requires. Other 

metrics, such as power consumption, design complexity, 
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delay, etc., are summarily ignored. Indeed, a common 

criticism of the Championship Branch Prediction competition 

is that some of the submitted designs aren’t even 

implementable in real hardware. For example, neural network-

based designs like [5] require a large adder-tree that would 

have unacceptably large delays in real hardware. 

We wish to address these problems by developing a 

systematic methodology for designing branch predictors and 

providing the means to evaluate the cost of implementation of 

such a design. To accomplish these goals, we design a high-

level language capable of expressing any branch predictor. 

This language can be easily modified to express other 

hardware devices, such as prefetchers. Then, we present a 

constrained random generator to automatically generate any 

number of possible branch predictors of any given complexity. 

Finally, we apply genetic algorithms, a directed search 

heuristic that mimics the process of natural evolution to refine 

these generated models, to create new branch predictors. This 

entire process, from generation to evaluation and refinement, 

is completely automated. 

II. PRIOR WORK 

The concept of designing hardware modules using genetic 

algorithms is not novel: Emer and Gloy proposed a similar 

approach in 1997 [8]. In their work, they developed a general 

language in which most table-based branch predictors can be 

expressed. Figure 1 shows Emer’s model of a branch 

predictor. Their proposed language modeled all predictors as a 

table with an Input signal which indexes into the table, a 

Prediction output signal representing the value stored at the 

table index, and a Feedback input signal which can be fed 

back into the table. 
 

 
Fig. 1.  Emer and Gloy’s model of a branch predictor 

 

Any design expressed in Emer and Gloy’s language can 

then be mapped to a tree structure. These trees can be 

automatically generated and refined using genetic algorithms 

[9]. A high level overview of the algorithm is as follows:  

1. Generation: an initial population is randomly 

generated, forming the initial generation. 

2. Selection: Individuals are evaluated and a fitness 

metric is generated for each individual. Those with 

high fitness are selected for reproduction. Those with 

low fitness may be discarded. 

3. Reproduction: Attributes from each parent are 

combined to form children (crossover), as well as some 

change for random mutations. 

Additional constraints were added to ensure that we 

produce “legal and usable individuals” [8]. After the genetic 

operations step, individuals that map to illegal language 

expressions are corrected, and individuals that require too 

much memory have their storage structures randomly 

truncated until their memory requirement falls under a given 

limit. 

Using the methodology outlined above, Gloy and Emer 

were able to achieve respectable results. They were able to 

automatically synthesis predictors that were comparable to the 

state-of-the-art predictors at the time (e.g. GShare) [8]. 

It’s also worth noting that Seznec used simulated annealing 

(another directed search heuristic) for tuning parameters in his 

predictor design in [7], but otherwise maintained an ad-hoc 

design approach. 

We improve on Emer’s work in several ways. Firstly, our 

language is more general and can be used to describe any 

hardware structure, besides just branch predictors. Secondly, 

our language supports the notion of “introns” or  “junk DNA”, 

nodes that are disconnected and do not affect system output 

but may later do so due to mutations. Thirdly, we develop 

constrained random techniques to generate better quality 

predictors for the initial population. Fourthly, we use genetic 

algorithm improvements, such as elitism, seeding the initial 

population with known good results, and anti-clustering 

techniques to improve results.  

III. METHODOLOGY 

In this section we explain our methodology and 

infrastructure. 

A. Language 

Our first step was to define a new description language for 

branch predictors. A main goal was to not limit ourselves to 

describing only predictors: it should be easy to extend the 

language to support other hardware devices. We aimed to 

achieve this by including both high-level, branch predictor-

specific language constructs, and low-level generic constructs. 

For example, aside from having NAND, MUX, and XOR 

gates, we have tables, branch history registers, path history 

registers, and 2-bit counter tables in our language library. New 

library constructs can be easily added without touching the 

interpreter and generator source code. 

Our language consists of a set of generic modules, each of 

which may contain any number of parameters and inputs. For 

simplicity, we assume that each module can only produce a 

single output. All inputs and outputs are assumed to be wires 

of arbitrary length. Any necessary zero-extension or truncation 

is done internal to the module. 

Below we show a TABLE module. It has two parameters: 

the number of entries in the table, and the width of each entry. 

For all parameters, it is possible to specify a possible range of 

values, using the notation [upper limit : lower limit]. The 

predictor generation algorithm will then pick a value from 

within the range.  

Next, we specify the inputs for each module. Each input is 

either the output of another module, or one of the primitive 

inputs. In our example table module, the table inputs are the 



 3 

read index, write value, write index, and write enable signals, 

respectively. 

For each input, you can specify the affinity that the 

particular input has for a given type of signal. One can then 

assign a probability that the particular input will be attached to 

the specified preferred input. We use the keyword null to 

denote that the given input has no particular affinity for any 

specific value. In this case, all signals have an equal 

probability of being attached to that input. 
 

TABLE#( 

[max # of entries : min # of entries]%100, 

[max size of entry : min size of entry]%100 

) 

{ 

preferred read index % probability, 

preferred write value % probability, 

preferred write index % probability, 

preferred write enable % probability 

} 

 

Finally, we define the primitive inputs and outputs which 

our language supports. The primitive inputs are the inputs that 

the branch predictor will receive from the outside 

environment. 

We support the following primitive inputs: 

 

 
 

We only have one primitive output, which is the prediction 

given. The least significant bit of the prediction signal will 

decide whether or not the branch is taken: 

 

 
 

Shown in the following table are the modules we decided to 

include in the language, and what each parameter and input 

affinity is set to. Note that our language is extremely 

extensible, and new modules can very easily be added (or 

existing modules modified): 

 

 

 

 

 

 

Basic logic: 

 
 

Branch prediction specific logic: 

 
 

For the branch predictor specific modules, a GHR is a 

global history register. It records the history of all branches 

encountered in the program. It is basically a shift register such 

that a 1 is shifted in if the most recent branch encountered was 

taken, and a 0 otherwise. Separate Fetch and Retire versions 

exist for the global branch history at fetch and retire time, 

respectively. Similarly, the PHR is a path history register; it is 

a shift register that records the least significant bit of all the 

branch addresses encountered so far. 

The TABLE module is a generic table; TABLE CNTR is a 

table of saturating n-bit counters; TABLE 2BITCNTR is a 

table of saturating 2-bit counters, which we included as a 

special instantiation of TABLE_CNTR 
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We now present an example instantiation of a GShare 

predictor, written in our language: 

 

 
 

The corresponding dependency graph of GShare is shown 

below: 

 

 
Fig. 2.  Dependency graph of GShare 

 

Because of the nature our language, it is totally possible for 

us to generate a predictor whose dependency graph is 

disconnected. In Figure 3, we see that the component 

highlighted is not connected to the predictor output in anyway: 

 

 
Fig. 3.  A predictor which is disconnected (highlighted component is not 

connected to the predictor out) 

 

While this may appear at first to be a drawback, there are 

actually advantages to having “useless” components in the 

predictor. It turns out that for genetic algorithms, it is often 

usful to have useless genomes called “introns” (or “junk 

DNA”) that, while not directly useful, serve to protect 

developing individuals from mutations and other genetic 

operations [8]. 

This is because in general, most mutations initially decrease 

the fitness of an individual. Improvements to an individual’s 

fitness usually only occur after a series of mutations. Thus, if 

there were no intron, then any mutation would immediate 

impact the fitness of the individual, most likely lowering it, 

making it far less likely for the individual to survive to the 

next generation. On the other hand, if the mutations initially 

occurred in the introns, then the fitness of the individual would 

not be immediately affected. Consequently, it’s more likely 

for several mutations to accumulate in the introns while the 

fitness of the individual remains unchanged. A later mutation 

may finally connect the intron component to the predictor 

output. If the accumulated mutations led to a better structure, 

the individual’s fitness level will now increase (if it didn’t, 

then of course the individual’s fitness will decrease). 

B. Fitness Test 

To actually evaluate the fitness of generated individuals, we 

rely on the trace simulation framework provided by the 

Championship Branch Prediction competition [6].  

The Championship Branch Prediction framework provides 

traces of various workloads, as well as a test harness which 

will feed the traces into the predictor under test and generates 

performance statistics. Thus, we needed to implement a 

compiler which can take a description of a predictor in our 

language and generate the appropriate C++ code for the 

simulation framework. To do this, we implemented a C++ 

class for each module in our language. The module parameters 

become arguments into the class constructor. In addition, each 

module class implements a Invocate() function, which 

takes as input the input arguments to the module, and produces 

a single output. 

To model the fact that all our signals and variables can be 

bitstrings of arbitrary length, we chose to use the 

dynamic_bitset class from the Boost library. This is a 

class that represents a bitstring of arbitrary width, and the 

width of the bitstring can be resized at run-time. This gave us 

the flexibility to combine modules in the most general and 

arbitrary ways (since we not have to worry about input/output 

width mismatches, which was a problem that plagued Emer 

and Gloy [8]). However, we also suffer a clear performance 

penalty as a result of our approach. Many of the operations 

(i.e. logic operators like AND, OR, etc.) are far more 

computationally expensive when performed on these generic 

bitstrings of arbitrary length, instead of on primitive types like 

int. We also often need to truncate or pad inputs to the 

appropriate width because we allow for arbitrary widths.  

As an example of the slowdown we suffer, the simulation of 

GShare takes roughly 1 second if the C++ code was written 

using int, but takes 4 seconds when using dynamic_bitset. 

Obviously, for more complex predictors, the slowdown 

becomes worse. A big predictor can take up to 30 seconds to 

simulate. We profiled the simulation run and fund that most of 

the times were spent on dynamic_bitset method calls. 

Yet despite the significant slowdown created by using 

arbitrary length bitstrings, we were able to mitigate this 

somewhat by pruning dead code generated by disconnected 

components (discussed below), and by doing several (12) 

simulations in parallel. 

In terms of generating code, we first generate a dependency 

graph for the predictor like in Figure 2 and 3, and prune out 

the disconnected components, since they do not affect the 

prediction. Then, we perform a topological sort on the 

dependency graph to get the order in which we need to 
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invocate all the component modules. We then generate the 

C++ code by calling the Invocate() methods on the 

different module class objects in the order specified by the 

topological sort. The (simplified) generated C++ code for 

Gshare is shown below in Figure 4: 

 

 
Fig. 4.  Generated C++ code for GShare 

 

One clear drawback with our approach is that we cannot 

have loops in the dependency graph. Obviously, if we had a 

loop in the dependency graph with purely combinational (i.e. 

logic) modules, then this would be a problem, as this would 

translate to a combinational loop in real hardware. However, 

our method also prevents us from having a table module 

output feed back into its own input chain. This is a false 

constraint because in real hardware, such loops would not be a 

problem, because there would be a register in the loop, so it is 

not a real combinational loop. However, our method currently 

prevents such constructs, and it actually can prevent us from 

being able to generate more advanced predictors like [5] and 

[7]. This is something we definitely need to address in the 

future. 

Also, it’s worth noting that although the Championship 

Branch Prediction framework provides many traces, we chose 

to use the smallest trace in order to reduce simulation times. 

Our rationale is that we can use the smallest trace to first 

identify promising predictor candidates, then run the entire 

trace on them to get the actual performance statistic. 

C. Predictor Generation 

One key aspect to successfully using genetic algorithms is 

to generate a diverse and reasonable initial population. 

Generated predictors need to be sufficiently complex, yet with 

high enough performance such that useful components can be 

identified and propagated amongst the population. Thus, the 

naïve approach of randomly selecting a module, parameters, 

and inputs does not suffice. Instead, we propose using a 

constrained random generator to ensure a sufficiently high 

quality initial population. We focus on improving the quality 

of parameters and module input selection for this work. 

Generating reasonable parameters is simply a matter of 

selecting between a range of values for each parameter in a 

configuration file. A better approach would be to define an 

upper bound, lower bound and mean, but we were not able to 

implement this due to a lack of time. 

Selecting proper inputs is a much more difficult task. A 

module may have any number of inputs, and the order of 

inputs is important. For example, a table has a read index, 

write enable, write data, and write index as its inputs. These 

inputs are not interchangeable: for example, one would prefer 

to connect the branch PC value to a table index instead of its 

write-enable line. To account for this issue, we propose the 

notion of input affinity: each module input has some degree 

of preference for a specific input wire name. The generator 

will attempt to choose the specific wire or the output value of 

a module that used the wire as its input.  

D. Predictor Mating Selection 

After evaluating the code, we rank the predictors based on 

their performance provided by the framework (cycle penalty 

per thousand instructions). We use a tournament approach for 

selecting pairs of branch predictors for mating: first, we select 

a random pair of predictors. We then choose the best predictor 

out of those two. Then, we perform this operation again. These 

two best predictors (the tournament winners) are chosen to be 

mates. We continue with this process for all members of the 

population.  

E. Predictor Mating 

To mate two branch predictors, we read the predictor 

language files and generate dependency trees. These two trees 

are then merged by randomly selecting a sub-tree from each 

and swapping the two sub-trees. Note that since the tree is a 

subset of the predictor description (due to dead code), special 

care needs to be performed to make sure illegal code is not 

produced. Conflicting output names are renamed and now-

invalid inputs are randomly attached to valid inputs.  

F. Predictor Mutation 

Once the diversity of the initial population is exhausted, we 

depend on mutation to generate new branch predictors. Thus, 

we need to support many mutation functions to enable us to 

perform any branch modification possible. We chose the 

following set of operations to support: 

1. Input mutation: a node is randomly chosen and one of 

its inputs is randomly swapped for a different input. 

2. Parameter mutation: a node is randomly chosen and 
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one of its parameters is regenerated using the 

constrained random technique described in Section 3b. 

3. Node addition: a new module is randomly generated 

and its inputs and parameters are randomly selected 

using the constrained random technique described in 

Section 3b. 

4. Node deletion: a random module is deleted. Any 

resulting invalid inputs are randomly swapped for valid 

inputs.  

G. Population Selection 

After the children are generated, we re-rank all predictors 

(parents + children) and choose the predictors with the highest 

fitness for the next generation. This is an extreme form of 

elitism and provides the fastest method of convergence but 

may lead to a sub-optimal solution. We leave testing various 

methods of selection as future work. 

IV. METHODOLOGY REFINEMENT 

After running initial experiments, we identified numerous 

problems with the basic genetic algorithm approach and 

introduced heuristics to address these issues.  

A. Local Maximum Stagnation 

After 5-10 generations, the genetic algorithm converges on 

a relatively poor local maximum and does not find a better 

alternative. To combat this, we implemented stagnation 

detection: after a certain number of generations in which the 

best predictor does not change, we start to increase the 

mutation rate. For our tests, the mutation rate starts out at 1 

mutation per generated child, and then is doubled after every 

generation up to a maximum of 32. We were not able to 

improve performance much even after using this approach.  

B. Poor Initial Population 

Due to a lack of time, we were not able to effectively tune 

our constrained random predictor generator. Thus, we decided 

to introduce population seeding: we augmented our initial 

population pool with known good predictors, such as gshare 

and some hybrid predictors. This pool is separate from the rest 

of the population and is only available for the purposes of 

mating. This did improve convergence significantly and 

produced a better local maximum.  

C. Poor Population Diversity 

After a few generations, the population diversity started to 

suffer greatly as it converged on a solution. Poor diversity 

prevents the genetic algorithm from operating efficiently and 

can cause it to converge on a poor local maxima. To combat 

this issue, we introduced cluster detection: when “clusters” of 

predictors with the exact same performance (and thus the same 

internal structure) are detected, their fitness score is multiplied 

by a function of the number of members in the cluster. 

However, we would still like to keep a few of the members. 

Therefore, for predictors {P1,… Pn}, we compute the modified 

fitness of the predictors as { P1*1, …, Pn*n}. In practice, this 

improved the population diversity significantly.  

V. EVALUATION 

Due to the sheer magnitude of the project, we were unable 

to spend enough time tuning the overall process. Performance 

results were poor, although the overall technique seems 

relatively promising. Overall, we were not able to evolve 

anything better than a 2-bit counter table for unknown reasons. 

Further work is necessary to identify potential issues related to 

our complicated generation and mating algorithm. We did all 

of our testing on our lab machine, an overclocked 6-core 

machine running at 4.0GHz with 24GB DDR3, as well as the 

LRC machines. Due to our performance optimizations 

(launching parallel compilations and simulation), runtimes of 

30 seconds for each predictor simulation were common. We 

only had 6 cores and 12 threads available, so each generation 

would complete in about POPULATION_SIZE*0.5/12 

minutes. It is possible to farm the job out to multiple 

computers to further improve runtimes. 

We evaluated the genetic algorithm with and without cluster 

detection. The runs are with a population size of 24, 100 

generations, branch predictor complexity of up to 20 nodes, 

and mutation rate of 1 mutation per child. As Figures 5 and 6 

show, after tens of generations, the run without cluster 

detection converges completely on a single solution. However, 

with cluster detection, the population stays diverse (and with a 

similar local min), improving its changes to find a better 

solution. 

 
Fig. 5.  Predictor fitness vs. generation without cluster detection 

 
Fig. 6.  Predictor fitness vs. generation with cluster detection 
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VI. CONCLUSION AND FUTURE WORK 

In this work, we propose a new language to describe branch 

predictors that can be easily extended to any type of hardware 

devices. We propose a method of automatically generating, 

evaluating, and refining predictors and provide a proof of 

concept design. Although we were not able to improve on 

existing predictor designs, we have demonstrated that our 

automated approach can improve the performance of the 

randomly generated predictors, albeit currently not well. 

Genetic algorithms need a lot of tuning to produce good 

results, and we simply were not able to do this due to a lack of 

time. However, due to the modularized and parameterized way 

in which our code was written, doing so is not difficult. 

Future work includes allowing for table outputs to feed back 

into table inputs, generating HDL code from the branch 

predictor description language, improving the constrained 

random generator, tweaking the library modules and their 

input affinity weights, and improving the predictor mating and 

mutation functions. 
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