
  

 

Abstract — Boolean satisfiability is one of the 
most researched algorithms, finding uses in 
myriad fields ranging from artificial intelligence 
to formal verification. Most advances in the 
field have focused on improving the original 
Davis-Putnam-Logemann-Loveland (DPLL) 
algorithm. However, these optimizations were 
designed with single-threaded code in mind and 
many are not easily parallelizable. While 
parallelizing the original DPLL algorithm has 
been met with great success, achieving linear 
speedup, attempts to parallelize a modern 
DPLL algorithm with many advanced 
optimizations resulted in an overall slowdown in 
performance. We propose a hybrid solution 
utilizing NVDIA’s CUDA platform, which runs 
on massively parallel graphics processors, as 
well as the system CPU, which offers high 
single-threaded code performance. Our 
preliminary testing demonstrates the potential 
for our novel solution, generating a 2.5x 
speedup over a standard CPU-only DPLL 
implementation. 

I. INTRODUCTION 

The Boolean satisfiability problem (SAT) 
appears in many fields, including formal 
validation, artificial intelligence (AI), automatic 
test pattern generation (ATPG), timing analysis, 
delay fault testing, and logic verification. Due to 
the ubiquitious nature of SAT, combined with the 
fact that SAT was the first algorithm proven to be 
NP-Complete [1], considerable research effort has 
been spent designing efficient SAT algorithms. 
There are several conferences dedicated to the 
SAT algorithm and even a yearly competition. 
While many algorithms have been proposed, most 
are based on the original Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [2].  

Several major improvements to the algorithm 
have been proposed since then. GRASP introduced 
an efficient method for clause learning [3], in 
which new clauses are appended to the original 
problem after discovering a conflict to avoid 

reaching the same conflict again. CHAFF [4] 
implements a highly efficient Boolean constant 
propagation algorithm, which identifies any 
variable assignments required by the current 
variable state to satisfy the entire equation. Tinisat 
[5] explores the effect of branch restarting, in 
which the DPLL algorithm is restarted on different 
branches of the tree to avoid traveling down a local 
maximum in conjunction with clause-learning. 

While computer architects have moved toward 
exploiting parallelism instead of pushing the limits 
of single-threaded computing, not much work has 
been performed in multithreading the code. 
Current popular SAT solvers are all single-
threaded implementations. Part of the issue is that 
the DPLL algorithm improvements are all single-
threaded in nature and difficult to parallelize. 
While researchers have been able to demonstrate 
linear or even super-linear speedups when 
implementing the basic DPLL algorithm [6], 
attempts to parallelize a modern algorithm variant 
were met with failure [7]. In addition, all parallel 
work has been performed on networked computers 
via message passing or on SMP systems. GPUs are 
a low-cost and widely available platform that 
contains hundreds of simple cores, reaching more 
than 1 teraflop of theoretical compute power [8]. 
However, no work has been performed in porting 
DPLL to GPUs. 

We propose a hybrid approach involving a CPU 
for running the single-threaded path selection and 
other optimizations while a GPU performs the 
heavy computation. We theorize that such a 
platform would be able to incorporate many of the 
latest single-threaded DPLL optimizations while 
gaining the compute throughput advantages of a 
GPU. 

The rest of the paper is organized as follows. 
Firstly, we provide a brief background on SAT, the 
DPLL algorithm, and the CUDA GPU platform. 
Secondly, we describe potential partitioning of the 
algorithm on the CPU and GPU. Finally, we will 
provide initial performance results and analyze the 
resulting data. 
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II. BACKGROUND 

A. The Boolean Satisfiability Problem 

Boolean satisfiability is the problem of 
determining if there exists an assignment to a 
Boolean formula’s variables such that the final 
result is true. If such an assignment exists, the 
formula is said to be satisfiable. Else, the formula 
is unsatisfiable. The formula is provided in 
conjunctive normal form (CNF), also known as a 
product of sums. This is not a limitation since any 
Boolean formula can be converted into an 
equivalent CNF formula in polynomial time [9]. 
The variables or negated variables in the function 
are known as literals. Literals are grouped into 
clauses through the use of a logical OR. Literals 
can be found any clause. Clauses are logically 
ANDed together to form the full CNF equation. 
For example, consider the following equation: 

 
� = ��� + ����� + �	
��	 + ����� + ��
������ + �
 

 
This CNF formula contains three clauses: 

�� + ����� + �	, �	 + ����� + ��, and ����� + �. For an 
equation to be satisfiable, it should satisfy all of its 
clauses. An example solution would be: �	 =
1,  �� = 0, and all other variables are Don’t Care. 
This particular SAT problem falls under the 3-SAT 
category, in which all clauses have at most 3 
variables. 3-SAT is very popular in EDA and 
formal verification since all logic circuits can be 
represented in this form. 

B. The DPLL Algorithm 

The Davis-Putnam-Logemann-Loveland (DPLL) 
algorithm forms the basis of almost all 3-SAT 
solvers. The algorithm assembles the variables in a 
certain order and then incrementally assigns a 
value to each. As long as the resulting partial 
assignment doesn’t falsify the entire formula 
(recall that since all clauses are ANDed together, if 
any clause fails then the entire equation fails), the 
algorithm continues to choose variables and assign 
values. If a clause fails, then the algorithm assigns 
the opposite value to the last chosen variable and 
checks again. If this falsifies another clause, then 
the algorithm knows that this entire branch is false. 
Then, the algorithm backtracks to another 
previously chosen variable and assigns it to be the 
opposite value. This search process resembles a 
depth-first search on a tree data structure. The 
algorithm continues this process until all variables 
are assigned and the formula is satisfied (SAT), or 
until all possible assignments have been checked 
and the equation is determined to be unsatisfiable 

(UNSAT). Since DPLL backtracks as soon as a 
branch is determined to be UNSAT, it won’t 
necessarily visit all 2� possible combinations. 

DPLL incorporates an optimization technique 
called Boolean constraint propagation (BCP). In 
BCP, the algorithm searches through the clauses to 
see if the current partial variable assignment forces 
any other variables to must evaluate to true or false 
in order to satisfy the clause and thus the entire 
equation. This extra variable assignment can cause 
a cascade in which other variables must be set to a 
certain value. 

The data structures in DPLL are fairly simple. 
The current variable assignment is represented as a 
large data array, with the 0

th
 entry reserved. The 

index of the array represents the variable. 
Variables start with x1 and continue to xn, where n 
is the total number of variables. For example, the 
current value of x1 resides in the 1

st
 entry in the 

array, the value of x2 is located in the 2
nd

 entry, 
etc. The value can be one of three things: positive, 
negated, or undetermined. 

SAT solvers usually take input files in the 
DIMACS CNF format, such as the following 
example: 

The format is very simple. Lines starting with c 
are comments. The first non-comment line of the 
file is of the format: p cnf numLiterals 
numClauses. Finally, every clause in the equation 
is listed, with the number representing the variable. 
Since zero can’t be negated, we do not use 0 for a 
variable name. Each literal ends with a space and 
the number 0. 

To run the basic DPLL algorithm, the processor 
simply performs a lookup in the variable 
assignment array using the variable number as the 
index.  

The DPLL algorithm is very compute-intensive. 
Data sets are usually very small, on the order of 
several megabytes. In addition, while the basic 
DPLL algorithm can be easily be parallelized by 
partitioning the tree, many optimizations are 
single-threaded in nature (such as BCP) and cannot 
be easily parallelized.  

 
c Here is a comment. 

p cnf 5 3 

1 -5 4 0 

-1 5 3 4 0 

-3 -4 0 



  

C. The CUDA GPU Platform 

CUDA is an infrastructure from NVIDIA 
Corporation that provides software extensions to 
run general-purpose C code on their DirectX 10 
graphics processors (GPUs). The architecture is 
organized in a hierarchical manner. On the 
NVIDIA GeForce 9800, there are 128 simple in-
order stream processors which are organized in a 
SIMT (Single Instruction Multiple Thread) 
fashion. In other words, these 128 cores are 
grouped into 16 processing cores, each with 8 
stream processors. Within each processing core, 
the same instruction stream is sent to each of the 
stream processors. To solve issues with execution 
divergence (for example, in an if…else loop), the 
stream processors use predication. The processing 
cores are all connected to a large 256MB or 
512MB global memory implemented in GDDR3. 
To improve effective bandwidth and latency, each 
processing core also has a 16KB scratchpad that is 
shared between the stream processors.  

Instead of optimizing for latency like CPUs, 
GPUs are optimized for throughput. Thus, the 
CPUs can switch threads at an extremely fine 
granularity to hide latency. At least four threads 
are necessary per stream processor in order to fully 
hide dependency and register file/shared memory 
access latencies and obtain maximal performance. 

 

III. METHODOLOGY 

Due to limitations of time, we only implemented 
the basic DPLL algorithm without Boolean 
constraint propagation. Since the goal of our 
project is to demonstrate the effectiveness of our 
CPU/GPU hybrid approach, we feel that our results 
satisfy the requirements. Obviously, since our 
implementation scales very poorly with larger 
datasets, we are only able to provide results for 
smaller inputs. However, our presented 
optimizations are used effectively in different 
algorithms and should definitely scale to larger 
sized inputs. 

We tested several inputs that were automatically 
generated through a script. Some of the equations 
were SAT and some were UNSAT. We found that 
since our implemented optimizations were simple 
and work for everything, the results were fairly 
homogenous across different datasets. Thus, in the 
interest of time and space, we only present the 
results for a single testcase that has a runtime of a 
few minutes for the CPU-only implementation. 

 

IV. CPU/GPU ALGORITHM 

A. Initial Implementation 

To take advantage of the CPU’s single-threaded 
prowess and the GPU’s ability to run highly 
parallel code, we designed a simple algorithm that 
tightly coupled the CPU together with the GPU. At 
the start of the program, all of the clauses are 

 
Figure 1. Hybrid SAT algorithm runtime, striding across the number of blocks and threads per block within CUDA 



  

placed into the GPU global memory. During each 
iteration of the DPLL algorithm, the CPU will 
provide the GPU with the variable assignment. 
Then, while the GPU is processing the variable 
assignments, the CPU will calculate the next 
variable assignments for the GPU to consume. The 
GPU partitions the work as follows: clauses are 
placed within global memory. Each thread reads a 
few threads and accesses the variable assignment 
array, which is placed within shared memory. 
After each thread is done with their calculation, a 
parallel merge is performed and the result is sent to 
the CPU at the end of the kernel. Figure 1 shows 
the performance of our algorithm across a number 
of block and thread configurations. The algorithm 
clearly prefers a high number of threads to hide the 
latency of an access to global memory.  

However, many problems became apparent 
during the implementation of our algorithm. For 
example, the CUDA kernel call is indeed non-
blocking such that we can run code on the CPU in 
parallel with the code on the GPU, but the GPU 
cannot transfer data to the CPU until after the 
kernel call is over. Thus, we are not able to hide 

the latency of GPU to CPU communication, which 
is quite substantial since it’s over the PCI-E bus. 
Even when we started sending only necessary data 
(a difference of ~2KB vs. 1 byte), the amount of 
time didn’t change since it is completely latency-
bound.   

B. Parallel Depth First Search Optimization 

To reduce the number of GPU to/from CPU 
transactions, thus reducing the bottleneck, we 
decided to parallelize the DPLL algorithm in a 
different dimension. Previously, we only 
parallelized the literal calculations. Our new 
optimization breaks down the DPLL tree into 
several regions, in which each thread block 
processes a subsection of the tree. This breakdown 
results in a minimal increase in the memory usage: 
now, n variable assignment arrays are stored in 
global memory within CUDA instead of only one. 
However, these arrays are fairly small and the 
datasets fit global memory with room to spare. In 
addition, no additional space in shared memory is 
used. 

Keep in mind that the GPU is still only used to 

 
Figure 2. Breakdown of execution time into calculation, GPU/CPU transfer, and initial overhead for various job sizes 



  

process the literals. The goal of this optimization is 
to aggregate GPU to CPU communication and also 
provide more work for the GPU to consume. 
Parallelizing the control goes against the goal of 
this project, which is to enable the CPU to perform 
the control work while giving the easily 
parallelizable jobs to the GPU. 

As shown in Figure 2, this optimization provides 
a large amount of speedup as expected. 
Communication overhead between the CPU and 
GPU was decreased significantly. However, we 
noticed that there was a large variance in the 
individual job runtimes. There would frequently be 
a case in which multiple jobs finish quickly, with 
only a few jobs left remaining. Since the jobs are 
each mapped to a few processing units, we were 
clearly underutilizing the resources within the 
GPU. This was because DPLL could sometimes 
determine that a branch in the tree was UNSAT 
very early in the process. We therefore decided to 
implement another optimization to balance the 
amount of work per thread.   

C. Work Stealing 

Work stealing is a common method used to 
balance the amount of work performed per thread. 

The key concept is that jobs that finish early take a 
portion of the work left from jobs that have yet to 
be completed. 

Our work stealing algorithm works as follows: 
when a job detects that its path is UNSAT, it runs a 
heuristic to determine the job that’s furthest from 
being done. Our chosen heuristic is simple: since 
our DPLL algorithm searches the left-hand side 
(represented as a 0) of the tree first and only 
searches the right hand side (represented as a 1) as 
it backtracks, we look for the job that has a 0 
closest to the root of the node. Then, we mark that 
section of the tree as having already been explored 
to prevent others from repeating the same work. 

As shown in Figure 3, our algorithm works very 
efficiently. Since the CPU sends the entire variable 
assignment vector to the GPU, this work stealing 
algorithm demonstrates the potential of our hybrid 
CPU/GPU approach. Analysis shows that there is 
absolutely zero overhead as a result of work 
stealing on the GPU-side: the work-stealing 
algorithm is run on the CPU-side only. Our tests 
show that all threads remain perfectly balanced, 
some threads stealing work during back-to-back 
cycles.  

 
 

Figure 3. Increasing the number of jobs with and without work stealing 
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Work-stealing not only causes each thread to be 
more efficient, but also enables more parallelism. 
Since increasing the number of jobs without work-
stealing also decreases the efficiency of each job, it 
is not possible to have a large number of jobs since 
many processing units will be sitting idle after the 
jobs terminate early. Work-stealing solves this 
problem and thus allows the number of jobs to 
scale much better. Thus, with work-stealing, we 
can run a much greater number of jobs, which 
allows us to run more threads in CUDA, which 
allows us to hide latency much more effectively.   

D. Final Algorithm vs. CPU 

Since we did not have time to implement many 
of the advanced optimizations for DPLL, our 
algorithm scaled very poorly. Thus, we were only 
able to test on fairly small datasets. A real SAT 
problem would be orders of magnitude larger than 
our sample testbenches. As demonstrated in Figure 
4, even at such small input sizes, we see good 
speedup in the 45 clause case. Recall that SAT 
problems scale as a function of the clause squared. 
Obviously, our algorithm will see much better 
speedups with larger input sizes. 

V. WORK DYNAMICS 

For this project, Cas wrote the SAT software 
implementation and parts of the CUDA algorithm. 
Dan wrote the random DIMACS CNF generator, 
the parallel DPLL algorithm, the work stealing 
algorithm, and the paper. Bhargavi wrote the 
CUDA kernels and extended them to support 
various optimizations. Everyone assisted on the 
debug of the code as well as the data collection. 
 

VI. CONCLUSION 

In this paper, we presented a novel approach to 
dividing the Boolean satisfiability problem into 
two components: control, which is performed by 
the CPU, and data, which is performed by the 
GPU. Our results demonstrate the effectiveness of 
our solution. We implemented several 
optimizations to decrease the effect of the GPU to 
CPU communication over the slow PCI-E bus, as 
well as load balancing algorithms to efficiently 
scale to a large number of independent tasks. 
These changes improved our performance 
dramatically.  The separation of DPLL into several 

 
 

Figure 4. Baseline CPU vs. CPU/GPU hybrid solution. v stands for number of variables, c stands for number of clauses. 
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independent tasks gained us about 10x in 
performance, while implementing our work 
stealing algorithm improved performance 3x 
further. Implementing our optimizations on top of 
our infrastructure was fairly straight-forward, and 
no doubt implementing the standard SAT 
optimizations should be similarly trivial. 
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